
  

Peristaltic flow and heat transfer of 

a conducting fluid in an asymmetric 

channel  
 

Introduction 

           The magnetohydrodynamic (MHD) flow of a fluid in a channel with 

elastic rhythmically contracting walls (peristaltic transport) is of interest in 

connection with certain flow problems of the movement of conductive 

physiological fluids and with the need for theoretical research on the 

operation of a peristaltic MHD compressor, also the principle of magnetic 

field may be used in clinical application (magnetic resonance imaging MRI). 

Agrawal and Anwaruddin (1984) studied the effect of magnetic field on the 

peristaltic flow of blood using long wavelength approximation method and 

observed for the flow of blood in arteries with arterial stenosis or 

arteriosclerosis, that the influence of magnetic field may be utilized as blood 

pump in carrying out cardiac operations Li et al., (1994) have used an 

impulsive magnetic field in the combined therapy of patients with stone 

fragments in the upper urinary tract. It was found that the impulsive Magnetic 

field (IMF) activates the impulsive activity of the ureteral smooth muscles in 

100% of cases. Nonlinear peristaltic transport of MHD flow through a porous 

medium was studied by Mekheimer and Al-Arabi (2003).  Mekheimer (2004) 

studied the peristaltic transport of blood under effect of a magnetic field in 

non uniform channels. Some of the physiological systems in human body 

cannot be modeled by a symmetrical channel, especially the sagittal cross 

section of the uterus. Recently, Mishra and Ramachandra Rao (2003) 

developed the flow in an asymmetric channel generated by peristaltic waves 

propagating on the walls. Mishra and Ramachandra Rao (2003) obtained a 



  

perturbation solution for the problem of peristaltic flow of a viscous 

Newtonian fluid in an asymmetric channel.  Most of these studies are with out 

heat transfer. In general, heat transfer will play vital role on peristalsis. 

Peristaltic transport of a heat conducting fluid subject to Newton’s cooling 

law at the boundary was investigated by Tang and Shen (1989). Tang and 

Shen (1990) studied asymptotic solutions for the peristaltic flow of a heat 

conducting fluid. Motivated by these, we modeled the peristaltic transport of a 

heat conducting fluid in an asymmetric channel 

             The aim of the present study is to study the MHD peristaltic flow in a 

two-dimensional asymmetric channel under the assumptions of long 

wavelength and low Reynolds number in a wave frame of reference with heat 

transfer. The effects of phase shift and Hartmann number on the pumping 

characteristics are discussed in detail through graphs. 

 

1.1 Mathematical formulation and Solution 

We consider the peristaltic transport of a heat-conducting fluid in an 

asymmetric channel with flexible walls and asymmetry being generated by 

the propagation of waves on the channel walls travelling with same speed  

c  but with different amplitudes and phases. We assume that a uniform 

magnetic field strength 0B  is applied in the transverse direction to the 

direction of the flow (i. e., along the direction of the y-axis) and the induced 

magnetic field is assumed to be negligible. Fig 3.1. shows the physical model 

of the asymmetric channel. 

The channel walls are given by 
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where b 1 , b 2  are amplitudes of the waves,  is the wavelength, 
21 aa  is the 

width of the channel,  is the phase difference (0) and t is the time.  

We introduce a wave frame of reference  ,  x y moving with velocity c  

in which the motion becomes independent of time when the channel length is 

an integral multiple of the wavelength and the pressure difference at the ends 

of the channel is a constant (Shapiro et al., (1969)). The transformation from 

the fixed frame of reference  ,  X Y  to the wave frame of reference  ,  x y  is 

given by 

            

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1. Physical Model 

   -   ,    ,      - ,       x X c t y Y u U c v V     and  ( )  ( ,  ),p x P X t  

where  ,  u v  and  ,  U V  are the velocity components,  p   and  P   are 

pressures in the wave and fixed frames of reference, respectively. 
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The equations governing the flow in wave frame of reference are given by  
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and the equation of energy is 
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where e  is the electrical conductivity of the fluid,   is the density , T is the 

temperature, pc is the specific heat constant, k  is the thermal conductivity and 

  is the viscosity of the fluid. 

Introducing the following non-dimensional variables  
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where 0T  is the ambient temperature, in the governing equations (1.1-1.5), and 

dropping the bars, we get  
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and 

222 2
2 2

2 2

2

2

Re 1
2

.Pr

                                                                                      ,

T T T T u v
u v

Ec x y Ec x y x y

u v

y x


 



           
           

             

  
  

  

(1.10) 

where 1Re
a c


  is the Reynolds number , 0 1

eM B a



 is the Hartmann 

number 
 

2

2 0p

c
Ec

c T T



 is the Eckert number and Pr

pc

k


  is Prandtal 

number. 

Using long wavelength (i.e., 1  ) and negligible inertia 

(i.e., Re 0 ) approximations, we have 
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The corresponding non-dimensional boundary conditions are given as 
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Solving equation (3.11) using the boundary conditions (3.13), we get  

2

1 2cosh sinh /u c My c My P M          (1.15) 

where 
  

 

2

2 1

1

1 2 2 1

1 / sinh sinh

cosh sinh cosh sinh

P M Mh Mh
c

Mh Mh Mh Mh

  



 and    

           
  

 

2

1 2

2

1 2 2 1

1 / cosh cosh

cosh sinh cosh sinh

P M Mh Mh
c

Mh Mh Mh Mh

  



. 

 Solving equation (3.12) by using equation (3.15) and the boundary 

conditions (3.14), we get  
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The volume flow rate in the wave frame is given as 
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From (3.12), we have 
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The instantaneous flux at any axial station is given by 
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The average volume flow rate over one wave period (T= / c ) of the 

peristaltic wave is defined as  
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The pressure rise over one wave length of the peristaltic wave is given by  
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The equation (3.21) can be rewritten as 
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1.2 Discussion of the results 

 The variation of axial velocity u  with y  at 0.25x   is calculated for 

different values of Hartmann number M  and pressure gradient P with fixed  

1 0.7,   2 1.2,   2,d  0   in different cases (i) 75.0P ,  

(ii) 0P  and (iii) 75.0P as depicted. The velocity profiles are parabolas.  The 

maximum/minimum velocity occurs at the centre of the channel and increases 

as M increases.  This is due to peristalsis.  It is found that for positive values 

‘P’, the reverse flow occurs when 1M  and the opposite behaviour of the 

velocity is observed for 1M . 

Fig 3.3 shows the variation of axial velocity u  with y   for different 

values of Hartmann number M with 1 20.7, 1.2, 2,d   
6


   and for                          

(i) 75.0P , (ii) 0P  and (iii) 75.0P . For a given Hartmann number M , 

the maximum velocity decreases with the change in the values of pressure 

gradient P  from negative to positive. 

For a given pressure gradient P ,  the increase in the Hartmann number 

M , raises the velocity. 

 The variation of time averaged volume flow rate Q   with pressure rise  

p  for different phase shifts with 1 20.7, 1.2, 2d     and for  

(i) 0.5M  and (ii) 1M   as shown in Fig 1.4.  It is observed that in the 

pumping region and free pumping region as phase shift    increases the time 

averaged flow rate as well as pressure rise both decrease.  An interesting 

observation here is that in co-pumping region Q  increases with phase shift  



  

  for an appropriately chosen ( 0)p  .  Further time averaged volume flow 

rate increases increase in the Hartmann number M .  

 Using equation (1.16) we have plotted the variation of temperature  

T  with y for different values of Hartmann number M with 1 0.7,   

2 1.2,   2,d  0  , 0.5RT  , 2N   and for (i) 75.0P , (ii) 0P  and 

(iii) 25.0P .  It is observed that the temperature T  increases with the 

increasing y  and attains the maximum value nearer to the lower wall of the 

asymmetric channel. Moreover as Hartmann number M  increases, the 

temperature will increase through out the width of the channel. The similar 

behaviour is observed for / 6  . Further as phase shift   increases, the 

temperature decreases.  

 The variation of temperature T  with y  for different values of 

Hartmann number M with 1 0.7,   2 1.2,   2,d  0  , 1.5RT  , 2N   

and for (i) 75.0P , (ii) 0P  and (iii) 25.0P   .The temperature profiles 

are parabolas for 5.0M  when 0P , the temperature profiles is a straight line 

for .5.0M  is drawn for variation of temperature with phase shift / 6  .  It 

is observed that the temperature shows the same behaviour as that of 0  . 
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Fig 1.2(i). The variation of velocity u  with y for different values of 

M  with 1 20.7, 1.2   , 2,d   0  and 0.25x   for 

75.0P . 
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Fig 1.2(ii). The variation of velocity u  with y for different values of 

M  with 1 20.7, 1.2   , 2,d   0  and 0.25x   for 

0P . 
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Fig 1.2(iii). The variation of velocity u  with y for different values of 

M  with 1 20.7, 1.2   , 2,d   0   and 0.25x   for 

75.0P . 
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